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Abstract: An iterative synthesis of fused ether ring systems has been developed. This strategy couples a cyclic enol ether
oxidation and carbon-carbon bond forming reaction in one flask with an acid catalyzed cyclic acetal formation and alkoxide
elimination in another flask. The result is a general and highly efficient two flask synthesis of fused ethers as are present in a wide
variety of bioactive natural products. © 1998 Elsevier Science Ltd. All rights reserved.
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strategy was the stereoselective epoxndatmn and nucleophlhc ring opening of cyclic enol ethers (1 — 2, Scheme
1). From our perspective, the subsequent annulation sequence (2 — 3) was somewhat less critical for two
reasons. First, nearly all of the stereocenters in the fused ethers reside at the ring junctions; it is precisely these
centers that the epoxidation and carbon-carbon bond forming reaction address. Second, we felt that there were
several possible cyclization methods at our disposal. Consequently, while our first generation annulation

approach employed ring-closing metathesis reactions to carry out the 2 — 3 transformation, we were confident
that other strategies might be at least equally successful
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was c]early room for 1mpmvement For one, the annulanon sequence had required stoichiometric amounts of
transition metals and three synthetic steps. For another, the yields for the epoxidation and subsequent coupling
reaction of bicyclic enol ethers had been moderate and/or had given an undesirable stereochemical outcome. This
communication describes our second generation approach to these ring systems which focuses on the annulation
sequence while aiso examining the epoxidation of bicyciic fused ether rings in more detaii.

As envisioned, our new approach would combine the very promising cyclic enol ether epoxidation and
carbon-carbon bond forming reaction of our first strategy with an acid-catalyzed cyclization'” and enolization (5
— 7, Scheme 2). If successful, we felt that an approach of this type would be a dramatic improvement as it
would not only minimize the number of transformations required for each iteration but it would also avoid the use
of stoichiometric and/or expensive transition metals. While precedent suggested that the conversion of 6 into 7
could be carried out in two separate reactions,'*!7 we were interested in maximizing efficiency by effecting the

formation of the cyclic acetal and the subsequent elimination in a single flask.
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With this strategy in mind, 3,3- dimethoxypropyimagnesium bromide was coupied with epoxide 10'%a
Various iemperatures. As uxuauatcd, the “y'u;lu for these transformations laugcu from 51% at 6°C to 29% at -40°C
with rather low selectivity favoring the desired anti isomer 11 (entries 1 and 2, Table 1). In contrast, 3-
propenylmagnesium chloride adds to 10 in an 83% yield with complete anti selectivity at o°C.131° Fortunately,
we were able to overcome these moderate yields and lack of selectivity by using the corresponding cuprate.
Thus, in the presence of 0.5 equivalents of Cul, 3,3-dimethoxypropyl magnesium bromide added to 10 at -30°C

to give a >9:1 ratio of anti:syn products in a 63% overall yield.“"
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Table 1. 3,3 dimethoxy propyl addition to 10 (eq 1)
entry M temperature 11:12  yield
1 MgBr 0°C 1:1 51%
2 MgBr -40°C 1.7:1 2%
3 CuiigX -30°C &1 &%

With a reasonably efficient synthesis of 11 in hand, we turned our attention to the formation of the mixed
acetal and the subsequent elimination of methanol. In spite of our stated goal of identifying a singie flask
cyclization and elimination sequence, we initially investigated a two step approach. As illustrated (eq 2), addition
of TMSQTf to 11 at -65°C resulted in fhe oeneration of cvclic acetal 13 in 56% vield. 15 When 13 was subiected
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to either TMSOTT and pyridine at 40 °C 7 or PPTS, pyridine, and dichlorobenzene at 140 °C!® we were able to
efficiently isolate bicyclic enol ether 14 in a 91% yield. Encouraged by these results, we investigated the single
flask conversion of 11 into 14. To this end, hydroxy acetal 11 in dichlorobenzene was subjected to PPTS at 60°C
until its complete consumption was observed by TLC. Subsequcnt addition of pyridine followed by further
heating resuited in the isolation of the desired CyCllC enol ether 14.2 To the best of our Knowleage the sequence
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able to accomplish the synthesis of fused bicycle 14 in two flasks and 57% overall yield using readily available
reagents. In contrast, our previous synthesis required 4 flasks and resulted in a 37% overall yield using much
more costly reagents.
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Table 2. Acyclic Acetal to Cyclic Enol Ether Conversion (eq 2)

entry 11 513 . B4 yield®
1 TMSOTf, CH2Cl, -65°C TMSOTf, NEt3, CHzClz, 40°C, 14 h 28%
2 TMSOTT, CH,Cly, -65°C PPTS, pyridine, PhCi, 140°C, 4h 51%
8  mmmmmmmseee- PPTS, dichiorobenzene, pyridine 60-140°C, 6h ===-===-=------ 91%

2Qverall yield from 11 to 14
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As illustrated (eq 3), we have subjected 14 to an additional iteration. Our previous results had indicated
that the epoxidation of a s1m11ar bicyclic enol ether using dimethyl dioxirane generated the undesired epoxide
isomer, albeit in low yield.'? Fortunately we had been able to overcome this by utilizing the corresponding

Aot

DI'OITIODYOIID UﬂIOﬂUHa[Cly, hen i4 was SUD_]EC[CC[ to the same condaiions, a very smali amount of pI'O(JLlC[ as a
i iblic

tinn hu McDNanald 7 lad nc
Livik UJ AVEU ARG, ELVLS SRS Y )

to re-examine the bicyclic epoxidation i Addition of dimethyl dioxirane at 0°C followed by 3,3-
dimethoxypropyl magnesium bromide accordmg to the conditions used in the 9 — 11 transformation resulted ina
56% yield of readily separable hydroxy acetals 15 and 16 as a 1:3 mixture. Unfortunately, the major
diastereomer from this transformation proved to be the undesired 16. In an attempt to optimize these results the
epoxidation reaction was conducted at two additional temperatures. Epoxidation at -65°C resulted in a <1:9 ratio
of 15 to 16 confirming our earlier speculation that the inherent facial selectivity of bicyclic ring systems like 14 is
from the same face of the molecule as the C-5 ring junction hydrogen. Not unexpectedly, epoxidation at higher
temperatures resulted in a decreased selectivity and an increased yield of the desired 15. Thus, epoxidation at 24
°C gave a 1:2 ratio of 15 to 16 respectively.

With bicyclic acetal 15 in hand, we examined its conversion into the corresponding tricyclic enol ether.
Much to our delight, we were able to isolate a 72% yield of tricyclic enol ether 17 by subjecting 15 to the same
conditions that had been successful in the generatiggloof bicycle 14 (g%.H3).
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aspects of the acid catalyzed cyclization and elimination sequence was the strong possibility that we would be
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ahle to synthesize not only 7-membered but also 8- and 9-membered rings.!2 To determine whether this notion
was correct, we have pursued the synthesis of [4.5.0]-fused ether 19. To thls end, the addition of the cuprate from
4,4-diethoxybutyl magnesium bromide®* to epoxide 10 at 0°C resulted in adduct 18 as a single isomer in 65%
yield. Gratifyingly, as in the formation of the [4.4.0]-ring system, we were able to isolate [4.5.0]-bicycle 19 when
hydroxy acetal 18 was exposed to PPTS and heat.
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Ta conclhide we have now develaned twa hiochly efficient annroachec to fiuiced ether rino cucteme whic
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share in common a single-flask enol ether epoxidation and C-C bond forming reaction. Future work in this area
will focus on the optimization of each of these strategies, further development of the epoxidation/ring opening of
C-3 unsubstltuted bicyclic enol ethers, and the use of both of our strategies in the synthesis of portions of
bioactive fused polyether natural products.
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